
Roadside interface to AutoPASS HUB
April 27th 2021

• Introduction

• SFTP interface

o SFTP accounts

o Directory structure

• Processing of uploaded files

o Upload complete

o Rejected files

 Filename convention

 File format

Introduction

The Roadside interface to AutoPASS HUB is basically the same as for CS Norway. File formats can be found in:

AutoPASS 4.3 Data formats overview and AutoPASS 4.3 formats Appendixes

The following changes have been introduced with AutoPASS Core:

1. File transfer protocol has been changed from FTP to SFTP

2. A new reject file has been introduced.

SFTP interface

SFTP accounts

• There is one SFTP account (and home directory) per TC and per Roadside Provider

• Username convention: <Roadside Provider>-<TC actor ID>. Example: QFree-100030

• The Roadside Provider shall authenticate using SSH keys (no password). The same key pair shall be used for
all TCs that the Roadside Provider handles

o The public key shall be sent to the AutoPASS SPOC

Directory structure

Roadside components (concentrators) upload files to and download files from the following sub-directories. This is
the same directory structure as for CS Norway:

• Directories to which roadside uploads files:

o trshared: contains transaction files (tr)

o pictures: contains image files

o exceptions: contains exception files

https://www.autopass.no/_attachment/3173102/binary/1395290
https://www.autopass.no/_attachment/3173101/binary/1395289

• Directories from which roadside downloads/views files:

o dbdir: contains for example status lists, issuer lists etc.

o reject: files uploaded from roadside that have been rejected

Sample

Processing of uploaded files
Upload complete.

The Roadside Adaptor will start processing a file as soon as the write handle has been released by the SFTP client.
This means that the client should not upload temporary files and rename (or move) them when the upload has
completed. The Roadside Adaptor might try to handle even temporary files. An exception to this has been
implemented: files with a filename ending with .tmp will not be handled by the Roadside Adaptor. This means that
the client may upload files temporarily as .tmp files and then rename them - but again: it is recommended to upload
files with their final filename.

The Roadside Adaptor deletes the file when it has completed the file processing.

Rejected files.
Rejected files will be moved to the "reject" folder. A new feature has been implemented for the AutoPASS Core
solution where a specific file will be made available together with the original file - a file that describes the detailed
reason(s) why the file was rejected.

A roadside file can be rejected by AutoPASS HUB or by AutoPASS IP according to attached “Interface specification for
AutoPASS HUB 1.1#Reject”. This will produce a json file with reject reasons.

Filename convention

The reject file shall have the same filename as the original (rejected) file - but with the file extension .json added to
the original filename. Samples:

• Original transaction file:

 tr100007_202005251210408_09.str reject file tr100007_202005251210408_09.str.json

• Original picture file:

Pic100007_P001_L01_F1_XEX_D2020_04_14_T11_59_38_N00000021.jpg reject file
Pic100007_P001_L01_F1_XEX_D20 20_04_14_T11_59_38_N00000021.jpg.json

https://confluence.autopassops.no/display/autopass/Interface%2Bspecification%2Bfor%2BAutoPASS%2BHUB%2B1.1#InterfacespecificationforAutoPASSHUB1.1-Reject
https://confluence.autopassops.no/display/autopass/Interface%2Bspecification%2Bfor%2BAutoPASS%2BHUB%2B1.1#InterfacespecificationforAutoPASSHUB1.1-Reject

File format
The json file format and sample json files are described in “Interface specification for AutoPASS HUB 1.1#Reject”
Rejected files from Roadside

The client can use this endpoint to reject a downloaded file which is not valid. The original file and the error
information will be returned to the original sender.

reject

The /reject endpoint currently only supports roadside files, that is tr files and picture (jpg) files.

Endpoint description

Method: POST

Input parameters:

Parameter Mandatory Description Parameter
Type

Data
type

transactionId yes Refers to the file. The transactionId can be found in the
AMQP message or the file URI query string

Authorization yes Authorization token header string

rejectMessage yes
A structured text element containing the detailed error
description. See format requirement below. Content type:
application/json

body string

Response contents: empty

JSON format requirement

The JSON string shall contain the following global parameters:

Parameter
name

Descriptio
n

Mandato
ry value Format Sample

transactionI
d

Reference
to the
original
file (same
as the
query
paramete
r)

yes string
(UUID) "51b68aa0-b096-417c-b074-0f2d4b7e83e2"

filename Filename yes string
(Filename)

"tr100007_201910251210065_09.str" or

"Pic100007_P001_L01_R1_XEX_D2019_09_04_T11_59_38_N0
0000021.jpg"

originalSend
er

Original
sender of
the file

yes
string
(AutoPASS
Actor ID)

"100007"

downloadTi
me

Timestam
p for
when the
file was
download
ed

yes

yyyy-MM-
dd'T'HH:mm
:ss (ISO
8601)

"2019-11-01T13:00:34"

Validation rules:

• originalSender must be equal to Actor ID in filename.

The JSON string shall also contain an array of error elements (one or more) - where each error shall refer to
a specific line/record in the original file. The error element shall contain the following parameters:

Parameter
name Description Mandatory

value Format Sample

lineNumber

A line is a string in the text file
that ends with a line separator.
First line gets line number 1. This
parameter will have no value in
the case of a jpg file.

no integer 23

chargingPoint
Number of the charging point
where the passage has taken
place

no *) string (3 digits) "065"

lane Number of lane where passage
took place no *) string (2 digits) "02"

passageTime Time when passage took place no *)
yyyy-MM-
dd'T'HH:mm:ss (ISO
8601)

"2019-11-01T13:00:34"

OBU OBU id no *)

Refer to “4.3
AutoPASS Data
Formats.pdf,
appendix A8”

"97800300031200123A"

errorAtPosition

Start position for detected error.
First character on a line has
position 1. A value 'null' means
that the error is not related to a
specific position - it applies to the
entire line (or file).

no integer 130

errorCode See table below yes integer in the range
100 to 999 178

errorDescription Textual description of the error
detected for the actual line yes string "An error description"

https://www.autopass.no/_attachment/3173101/binary/1395289
https://www.autopass.no/_attachment/3173101/binary/1395289
https://www.autopass.no/_attachment/3173101/binary/1395289

*) The parameter shall correspond exactly to the parameter in the original tr file or picture file (filename).
Refer to 4.3 AutoPASS Data Formats.pdf, appendix A8 and A9

Note on mandatory

All parameters shall be present in the JSON string. Missing values shall be represented as 'null' (without
quotes).

Error codes (the list is not exhaustive and is subject to changes):

Error
code Error name Description

General

101 Duplicate The same file has been processed already

Tr file

201 Invalid file length

202 Corrupt data Use for example if the line is corrupted or not in line with the specification

203 Missing parameter value

204 Invalid parameter value Use also in case, for example the operator code, toll plaza or lane is
unknown

205 Invalid parameter
format Use for example if the nationality does not comply with ISO 3166 Alpha 2

206 Match failure Parameter does not match the value of the parameter in the filename

Picture file

301 Unreadable picture

302 Corrupt picture file

303 Missing picture file

304 Invalid parameter value Filename parameter (for example charging point or lane number) is invalid

305 Match failure Picture imposed parameters does not match with the filename

https://www.autopass.no/_attachment/3173101/binary/1395289

Samples:

Sample JSON for tr file
{
 "transactionId" : "51b68aa0-b096-417c-b074-0f2d4b7e83e2",
 "filename" : "tr100007_201910251210065_09.str",
 "originalSender" : "100007",
 "downloadTime" : "2019-11-01T13:00:34",
 "error" :
 [
 {
 "lineNumber" : 23,
 "chargingPoint" : "065",
 "lane" : "02",
 "passageTime" : "2019-11-01T13:00:34",
 "OBU" : "97800300031200123A",
 "errorAtPosition" : 44,
 "errorCode" : 204,
 "errorDescription" : "The ServiceNumber is not numeric ("Ø~$")"
 },
 {
 "lineNumber" : 39,
 "chargingPoint" : "066",
 "lane" : "01",
 "passageTime" : null,
 "OBU" : "97800300031200124A",
 "errorAtPosition" : 8,
 "errorCode" : 203,
 "errorDescription" : "Missing passage time"
 },
 {
 "lineNumber" : 99,
 "chargingPoint" : null,
 "lane" : null,
 "passageTime" : null,
 "OBU" : null,
 "errorAtPosition" : null,
 "errorCode" : 201,
 "errorDescription" : "Line length (1024) is not correct (512)"
 }
]
}
Sample JSON for picture file
{
 "transactionId" : "51b68aa0-b096-417c-b074-0f2d4b7e83e2",
 "filename" : "Pic100007_P001_L01_R1_XEX_D2019_09_04_T11_59_38_N00000021.jpg",
 "originalSender" : "100007",
 "downloadTime" : "2019-11-01T13:00:34",
 "error" :
 [
 {
 "lineNumber" : null,
 "chargingPoint" : "001",
 "lane" : "01",
 "passageTime" : "20190904115938000",
 "OBU" : null,
 "errorAtPosition" : null,
 "errorCode" : 301,
 "errorDescription" : "Unable to read picture - snow storm"
 }
]
}

Interface specification for AutoPASS HUB 1.1

Introduction
Definitions
Version log

Overview
AMQP message format

Payload
Checksum
Routing key
Message subscription

File REST API
General
Login

Endpoint description
HTTP status codes

Upload file
Java sample
HTTP status codes

Download file
Endpoint description
HTTP status codes
Filename

Check if file exists
Endpoint description
HTTP status codes

Reject
Endpoint description
JSON format requirement
HTTP status codes

Introduction
AutoPASS HUB offers two application programming interfaces:

AMQP interface for exchange of meta data
File REST API for transfer of files (data)

The AMQP interface has been implemented with RabbitMQ (www.rabbitmq.com).

Definitions

Expression Description

AutoPASS component An AutoPASS components integrates with the AutoPASS HUB and is one of the following:

AutoPASS IP
TC
TSP
ANPR/MIR (does not utilize the AutoPASS HUB File REST API, but uses the ImageDB File REST API instead)

Version log

Version Date Change description Change order

1.0 17.10.2019 Initial version (moved from AutoPASS HUB document space)

1.1 05.11.2019 New endpoint: reject HUB SSA-V COO#20

Overview

http://www.rabbitmq.com).

1.

2.

3.

4.
5.

6.
7.
8.

The figure illustrates how the AutoPASS components integrate with the AutoPASS HUB and shows a typical scenario where Component A sends data (an
AutoPASS file) to Component B. The steps are as follows:

The sender, Component A (for example AutoPASS IP) is about to send a file (for example a TIF file) via AutoPASS HUB and starts this process
by uploading the file via the AutoPASS HUB File REST API. The File REST API returns a URI that can be used to download the file.
The sender does not need to resolve the recipient and simply creates an AMQP message containing the download URI and publishes this
message to the File Reference Exchange.
The Adaptor (for example the AutoPASS IP Adaptor) subscribes to all messages from the associated component, and the AMQP Broker delivers
the message to the Adaptor's queue.
The Adaptor receives the AMQP message, downloads and validates the file (details not shown here).
The Adaptor publishes a new AMQP message containing the same URI to the File Reference Exchange. The Adaptor has now resolved the
recipient (typically based on the filename) and uses a routing key that identifies the recipient(s).
The File Reference Exchange delivers the message to Component B's queue (a message might also be delivered to more than one queue).
The recipient (for example a TC) has bound to Component B queue and receives the AMQP message containing the download URI.
The recipient downloads the file from the File REST API

AMQP message format

Payload

The payload of the AMQP message shall be a JSON string, formatted as follows (the sequence of the parameters is not important). The parameter values
are not real (for demonstration purposes only).

AMQP message format

{"fileUri":"https://hubweb.autopassops.no/hub_file_rest/download?transactionid=1ccbf1cd-5c82-44be-8426-
1675819e4688&filepath=TIF100044201801010001_30C008_130001&se=2018-08-01T12:00:34&sip=0.0.0.0-255.255.255.255
&sig=jZTiEhjNSu8fts4wmNfGMDV5OpTRj/P3SRDCaZcjziM=",
"checksum":"23rZjcYTabWUrHm6ySAbYvfouxBtLQV0mxSe2VAPMc0=",
"transactionId":"1ccbf1cd-5c82-44be-8426-1675819e4688",
"fileType":"tif"}

The AutoPASS HUB will use the parameters as follows:

fileUri: to download the file (for further processing) and to infer sender and recipient (based on filename). Note that the fileUri has to be exactly the
same as the client got as response from the upload request. The URI will be validated by the download endpoint.
checksum: to verify file integrity.
transactionId: reference to the file. The transactionId will also be used to track all file events.
fileType: AutoPASS file type

Checksum

AMQP properties

The AMQP exchange, queues and bindings will be managed by the AutoPASS HUB vendor. The AMQP properties can be found .here

https://confluence.autopassops.no/display/autopass/AutoPASS+HUB+connection+properties

The checksum parameter of the AMQP message shall be generated as a SHA256 digest of the file contents. Following is a java implementation of the
checksum generation.

CheckSum.java

package no.autopassops.tools;

import java.io.*;
import java.security.MessageDigest;
import java.util.Base64;

public class Checksum {

 private String checksum;

 public String getChecksum(InputStream in) throws Exception {
 MessageDigest digest = MessageDigest.getInstance("SHA-256");
 try {
 byte[] buf = new byte[4096];

 for (;;) {
 int count = in.read(buf);
 if (count < 0) {
 break;
 }

 digest.update(buf, 0, count);
 }
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (Exception e) {
 }
 };
 }
 byte[] sha256 = digest.digest();
 byte[] base64 = Base64.getEncoder().encode(sha256);

 checksum = new String(base64);
 return checksum;
 }

 public static void main(String[] args) {
 try {
 FileInputStream fi = new FileInputStream("C:\\Project\\AutoPASS
HUB\\Testdata\\TIF100007201909080040_100007_130001");
 Checksum cs = new Checksum();
 String checksum = cs.getChecksum(fi);
 System.out.println("Checksum: " + checksum);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Routing key

The routing key shall be formatted as follows:

<source>.<id>.<datatype>.<target>

Where:

source is the actual AutoPASS component that is producing the message. This is one of the following:
acfc
easygo
roadside
ip

tc
tsp

id is the unique ID for the source (component). Note that there might be more than one instance of the same component.
datatype is the AutoPASS file type and is one of the following:

tr
tif
tic
hgv
hgc
nat
nac
nbs
act
ait
tst
alc
img
ex
alm
obustatusfile
tariffile
videotextfile

All AutoPASS components (except AutoPASS HUB itself) shall always set target to "hub".

The AMQP producer shall provide the routing key according to this format when it sends the AMQP message to the File Reference Exchange. For
example:

ip.301.tif.hub: AutoPASS IP is sending a TIF file
tc.312.tic.hub: TC with Id 312 is sending a TIC file

Message subscription

Message subscriptions takes place via routing bindings applied to the message recipient's queue. Bindings are managed by the AutoPASS HUB vendor
only, meaning that the recipient needs to contact the AutoPASS HUB vendor in order to subscribe to new messages. Note that the default bindings (for
example for AutoPASS IP or for a TC) will cover all mandatory file types.

File REST API

General

The description of the current version of the File REST API can always be found online on https://hubtest4web.autopassops.no/hub_file_rest/swagger-ui.
. This service can also be used to manually try all endpoints.html

The descriptions have been extracted and pasted into the sections below, one for each endpoint.

The following pseudo code shows how a test client typically works, using the File REST API. The login, upload and download endpoints are described
below.

Pseudo code file REST API client

// Upload file
String token1 = login(username1, password1);
String transactionId = UUID.ramdomUUID().toString();
String downloadURI = upload(transactionId, new File("test.jpg"), token1);

// Download file (as another client)
String token2 = login(username2, password2);
File downloadedFile = download(downloadURI, token2);

Login

The client shall login with username and password to get access to the File REST API. The login request will return an authorization token that has to be
included with all following upload, download or exists requests. The authorization token has an expiration time and the client will have to login again if the
token has expired.

Endpoint description

The describes the login endpoint as follows:Swagger UI

https://hubtest4web.autopassops.no/hub_file_rest/swagger-ui.html
https://hubtest4web.autopassops.no/hub_file_rest/swagger-ui.html
https://swagger.io/tools/swagger-ui/

HTTP status codes

The login endpoint may return the following http status codes:

Code Name Description Error handling

200 OK Login successful

401 Unauthorized Invalid username and/or password Contact the SPOC

Upload file

The upload endpoint can be used to store a single file in the AutoPASS HUB filestore. The resulting URI shall be put into the AMQP message that is going
to the message exchange. The download URI contains the following parameters (based on the Azure File REST principles):

transactionId: The UUID that was generated by the client
filepath: path and name for the file that was uploaded
se: expiration time. The URI will not work after this time
sip: the IP range to be used for IP screening of the client
sig: HMAC SHA 256 signature generated for the URI parameters. The siq will be used to assure the integrity of the URI.

Endpoint description

The describes the upload endpoint as follows:Swagger UI

https://swagger.io/tools/swagger-ui/

Java sample

The following sample (Java) code shows how to upload a file using this endpoint:

Authorization

The word "Bearer" and a space has to be entered before the Authorization token (returned from the login endpoint).

JavaUploadTest.java

import java.io.File;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.HttpResponse;
import org.apache.http.entity.mime.content.FileBody;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;

...

String img = "file_to_be_uploaded.jpg";

File file = new File(img);

HttpPost request = new HttpPost(resttestUrl + "upload");

MultipartEntityBuilder builder = MultipartEntityBuilder.create();

builder.setMode(HttpMultipartMode.BROWSER_COMPATIBLE);

FileBody fileBody = new FileBody(file);
builder.addPart("file", fileBody);
builder.addTextBody("transactionId", transactionId); builder.addTextBody("checksum", checksumString); builder.
addTextBody("cameraId", "0"); request.setConfig(requestConfig); request.addHeader("Authorization", "Bearer " +
token);

HttpEntity multipart = builder.build();
request.setEntity(multipart);

HttpResponse response = httpclient.execute(request);

HTTP status codes

The upload endpoint may return the following http status codes:

Code Name Description Error handling

200 OK Upload successful

400 Bad request One or more of the input parameters were invalid Resolve error and try again

401 Unauthorized Authorization token is not valid Login to get a new token

409 Conflict The file does already exist Do not retry

422 Unprocessable entity The file is invalid Resolve error and try again

Download file

This endpoint can be used to download a file using a downloadURI. Note that all information is contained in the downloadURI, including the expiration
time. But the client needs to provide a valid authorization token in order to access the File REST API.

Endpoint description

The describes the download endpoint as follows:Swagger UI

https://swagger.io/tools/swagger-ui/

HTTP status codes

The download endpoint may return the following http status codes:

Code Name Description Error handling

200 OK Upload successful

400 Bad request One or more of the input parameters were invalid Resolve error and try again

401 Unauthorized Authorization token is not valid Login to get a new token

410 Gone The file does not exist Do not retry

Filename

Note that the download URI contains an object reference to the file and not the original filename. The original filename can be found in the Content-
Disposition response-header field. An example of this field is:

Content-Disposition: attachment; filename=downloaded_file.txt

Check if file exists

The client can use this endpoint to check if a file has been successfully uploaded to the filestore. The transactionId that was submitted together with the
upload attempt - or the filename can be used as input to this endpoint. Note that the transactionId is generated by the client.

Endpoint description

The describes the exists endpoints as follows:Swagger UI

https://swagger.io/tools/swagger-ui/

HTTP status codes

The download endpoint may return the following http status codes:

Code Name Description Error handling

200 OK Upload successful

401 Unauthorized Authorization token is not valid Login to get a new token

Reject

The client can use this endpoint to reject a downloaded file which is not valid. The original file and the error information will be returned to the original
sender.

reject

The /reject endpoint currently only supports roadside files, that is tr files and picture (jpg) files.

Endpoint description

Method: POST

Input parameters:

Parameter Mandatory Description Parameter
Type

Data
type

transactionId yes Refers to the file. The transactionId can be found in the AMQP message or the file URI query string

Authorization yes Authorization token header string

rejectMessage yes A structured text element containing the detailed error description. See format requirement below.
Content type: application/json

body string

Response contents: empty

JSON format requirement

The JSON string shall contain the following global parameters:

Parameter
name

Description Mandatory
value

Format Sample

transactionId Reference to the original file (same as the
query parameter)

yes string (UUID) "51b68aa0-b096-417c-b074-0f2d4b7e83e2"

filename Filename yes string (Filename) "tr100007_201910251210065_09.str" or

"Pic100007_P001_L01_R1_XEX_D2019_09_04_T11_59
_38_N00000021.jpg"

originalSender Original sender of the file yes string (AutoPASS Actor ID) "100007"

downloadTime Timestamp for when the file was
downloaded

yes yyyy-MM-dd'T'HH:mm:ss
(ISO 8601)

"2019-11-01T13:00:34"

Validation rules:

originalSender must be equal to Actor ID in filename.

The JSON string shall also contain an array of error elements (one or more) - where each error shall refer to a specific line/record in the original file. The
error element shall contain the following parameters:

Parameter
name

Description Mandatory
value

Format Sample

lineNumber A line is a string in the text file that ends with a line separator. First line gets line number 1.
This parameter will have no value in the case of a jpg file.

no integer 23

chargingPoint Number of the charging point where the passage has taken place no *) string (3 digits) "065"

lane Number of lane where passage took place no *) string (2 digits) "02"

passageTime Time when passage took place no *) yyyy-MM-dd'T'HH:mm:ss
(ISO 8601)

"2019-11-
01T13:00:
34"

OBU OBU id no *) Refer to 4.3 AutoPASS
, Data Formats.pdf

appendix A8

"97800300
03120012
3A"

errorAtPosition Start position for detected error. First character on a line has position 1. A value 'null' means
that the error is not related to a specific position - it applies to the entire line (or file).

no integer 130

errorCode See table below yes integer in the range 100
to 999

178

errorDescripti
on

Textual description of the error detected for the actual line yes string "An error
description"

*) The parameter shall correspond exactly to the parameter in the original tr file or picture file (filename). Refer to , 4.3 AutoPASS Data Formats.pdf
appendix A8 and A9

Note on mandatory

All parameters shall be present in the JSON string. Missing values shall be represented as 'null' (without quotes).

Error codes (the list is not exhaustive and is subject to changes):

Error code Error name Description

General

101 Duplicate The same file has been processed already

Tr file

201 Invalid file length

202 Corrupt data Use for example if the line is corrupted or not in line with the specification

203 Missing parameter value

204 Invalid parameter value Use also in case, for example the operator code, toll plaza or lane is unknown

205 Invalid parameter format Use for example if the nationality does not comply with ISO 3166 Alpha 2

206 Match failure Parameter does not match the value of the parameter in the filename

Picture file

301 Unreadable picture

302 Corrupt picture file

303 Missing picture file

304 Invalid parameter value Filename parameter (for example charging point or lane number) is invalid

305 Match failure Picture imposed parameters does not match with the filename

Samples:

Sample JSON for tr file

{
 "transactionId" : "51b68aa0-b096-417c-b074-0f2d4b7e83e2",
 "filename" : "tr100007_201910251210065_09.str",
 "originalSender" : "100007",
 "downloadTime" : "2019-11-01T13:00:34",
 "error" :
 [
 {
 "lineNumber" : 23,
 "chargingPoint" : "065",
 "lane" : "02",
 "passageTime" : "2019-11-01T13:00:34",
 "OBU" : "97800300031200123A",
 "errorAtPosition" : 44,
 "errorCode" : 204,
 "errorDescription" : "The ServiceNumber is not numeric ("Ø~$")"
 },
 {
 "lineNumber" : 39,
 "chargingPoint" : "066",
 "lane" : "01",
 "passageTime" : null,
 "OBU" : "97800300031200124A",
 "errorAtPosition" : 8,
 "errorCode" : 203,
 "errorDescription" : "Missing passage time"
 },
 {
 "lineNumber" : 99,
 "chargingPoint" : null,
 "lane" : null,
 "passageTime" : null,
 "OBU" : null,
 "errorAtPosition" : null,
 "errorCode" : 201,
 "errorDescription" : "Line length (1024) is not correct (512)"
 }
]
}

Sample JSON for picture file

{
 "transactionId" : "51b68aa0-b096-417c-b074-0f2d4b7e83e2",
 "filename" : "Pic100007_P001_L01_R1_XEX_D2019_09_04_T11_59_38_N00000021.jpg",
 "originalSender" : "100007",
 "downloadTime" : "2019-11-01T13:00:34",
 "error" :
 [
 {
 "lineNumber" : null,
 "chargingPoint" : "001",
 "lane" : "01",
 "passageTime" : "20190904115938000",
 "OBU" : null,
 "errorAtPosition" : null,
 "errorCode" : 301,
 "errorDescription" : "Unable to read picture - snow storm"
 }
]
}

HTTP status codes

The reject endpoint may return the following http status codes:

Code Name Description Error handling

200 OK Success

400 Bad request The JSON / contents is not valid Check error message

401 Unauthorized Authorization token is not valid Login to get a new token

410 Gone The file does not exist Do not retry

	del-1.pdf
	Roadside interface to AutoPASS HUB
	Introduction
	SFTP interface
	SFTP accounts
	Directory structure

	Processing of uploaded files
	Upload complete.
	Rejected files.
	Filename convention
	File format

	Rejected files from Roadside
	Endpoint description
	JSON format requirement
	Validation rules:

	del-2.pdf
	Interface specification for AutoPASS HUB 1.1

