
Dokument «Integrasjonsrammeverk», ID 2945 - EQS

1/16

Integrasjonsrammeverk
Dokument administrator: Frode Junge Gyldig fra: 17.12.2020 Revisjon: 1.1
Godkjent av: Bjørn Våga Revisjonsfrist: 17.12.2021 ID: 2945

Integration Framework

Content

1 Introduction

1.1 Change History
1.2 Purpose
1.3 Outside scope

2 HMN’s integration strategy
2.1 National Architecture principles
2.2 Integration architecture

3 Integration principles
3.1 External information exchange
3.2 Standardized messages
3.3 Transport guarantee
3.4 No duplicate checking on the service bus,
3.5 Traceability
3.6 Communication security
3.7 Transformation
3.8 Transformation when more than one integration platform is involved
3.9 Encryption of content
3.10 Signing
3.11 Authentication
3.12 Enrichment
3.13 Transport receipt
3.14 Application receipt

4 Integration specific parameters and attributes
4.1 Integration type
4.2 Data exchanges and exchange patterns

4.2.1 Synchronous
4.2.2 Asynchronous

4.3 Communication profile
4.3.1 When to use which profile

4.4 Content standards
4.4.1 When to use which standard

4.5 Technical protocols

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

2/16

4.5.1 When to use which protocol
4.6 Data categories

5 How to document integrations
5.1 How to model integrations

5.1.1 Integration blueprint
5.1.2 Integration process
5.1.3 Integration sequence

1 Introduction
1.1 Change History

Version Changes Date Author
0.8 First draft 25.01.2019 Rune Hollås/HPAS

0.9 Tilpasset HMN 02.12.2019 Stig H. Solum og Frode
Jünge

1.0 Godkjenning av ledergruppe POD 10.12.2019 Frode Jünge

1.2 Purpose
The purpose of this integration framework is to give guidelines for integrations within HMN and between HMN
and surrounding applications. These guidelines must be used when planning and documenting the integration
and will contribute to choose the most suitable integration mechanism.

To support HMN’s objectives it is necessary to have a high level of ambition for application integration. This will
contribute to information sharing and effective work processes.

Applications can be linked either at the back-end (data exchange) or the front-end (client integration).

1.3 Outside scope
This document does not include guidelines and patterns for development on the ESB itself.
Laboratory device and medical device integrations are not covered by this framework.

2 HMN’s integration strategy
2.1 National Architecture principles

The HMN integration strategy shall be compliant with the national architecture principles applicable to the
health sector issued by National ICT
[1]

. The table below gives an overview of the architecture principles and the impact the principle has on integration
strategy in HMN.

Principle Description Impact on integrations

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

3/16

Principle Description Impact on integrations
Holistic approach

A holistic approach is to be used
when assessing needs, changes,
opportunities and solutions. This
involves taking into account the
overall usefulness for the health
service in the Central Norway
Health Region.

When designing an integration it shall
be assessed if there are other needs
that can be covered by the integration
or if an existing integration can be
expanded. Aim at flexibility, modularity
and simple management

Process orientation

The enterprises will through
process orientation (e.g., patient
flow and other core processes, as
well as supporting processes)
realise consistent and coherent
health services, and ensure that
ICT-solutions are designed to
support these processes.

An integration shall use the workflow
or activities the integration shall
support as a starting point, and aim at
simplifying and/or automating workflow
or collaboration between actors
(systems or persons)

Service orientation Service orientation shall be a basic
design principle for enterprises
and their ICT-solutions. This
applies to all domains of enterprise
architecture (business,
information, application, and
technology).

The integration architecture shall
support loosely coupled applications.
Integration services shall be described
in a service catalogue to stimulate
reuse and avoid duplication of
information and solutions.

Interoperability The enterprises and their ICT-
solutions shall be designed for
interoperability at organisational,
semantic and technical levels.

Open, international (communication
and content) standards shall be
preferred when establishing
integrations, in order to reduce the
complexity and vendor dependency.
Mandatory national standards shall be
followed for national services.
Established industry standards or
“best practice” shall be used when no
international or national standard exist.
Proprietary integration interfaces shall
be avoided

Information security

The enterprises shall ensure the
quality, confidentiality, integrity,
availability, and traceability of
information.

All integrations shall follow the
established security policy. As a rule of
thumb, the integration activity shall be
logged to ensure integrity and
traceability. This includes who has
sent what to whom, especially when
crossing organisational borders.
Exceptions: Registry lookup, master
data synchronization

Availability All relevant user groups shall have
access to necessary functionality
and information, in the right form
at the right time and in the right
place.

Integrations shall be robust and be
able to provide the required
information at any time.
The management of integrations shall
follow the same rules/SLA as the
service/process it supports.

Quality of use

The ICT-solutions of the
enterprises shall be designed in a
way that ensures effectiveness,
efficiency and a good user
experience.

A good user experience shall be
emphasised when designing
integrations, both for end users and
administrators of the integration.

Predictability and stability for end
users and systems shall be
emphasised. Administration and
exception handling shall be easily
understandable and unified, as much
as possible.

Adaptability

The enterprises’ way of
organisation, their processes, ICT-
solutions, information, and
technology shall be designed in
such a way that they can support
changes, and not act as
restrictions for change.

Reusability and use of standardized
frameworks, profiles interfaces and
information carriers shall be
emphasised when designing an
integration. Hardcoded parameters
and business rules shall be avoided.
Integrations shall be scalable in terms
of number of users or information rate.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

4/16

Principle Description Impact on integrations
Information management Information is a critical resource

for the enterprises and shall be
managed accordingly.

Integrations shall deliver correct
information, including information
about errors. Integrations shall as a
rule of thumb not compensate for
errors or shortcomings in the involved
applications. Business logic shall
preferably be implemented in the
application requiring the logic, not in
the integration middleware

Tabell 1 Architecture Principles

2.2 Integration architecture
The integration strategy emphasise all IT systems to be loosely coupled by using an enterprise service bus
(ESB).

The ESB is a strategic component in the integration between various systems and environments, and
provides integration architecture benefits like reusability, encapsulation and distribution.

The ESB will as a rule of thumb handle the technical interfaces, protocols and transform to relevant
interchange/content standards when necessary.

International interchange standards are preferred. National standards are preferred where there exist no
international standards, typically areas specific to Norway. Proprietary interchange interfaces shall be
avoided.

In some cases there might be a need for direct integrations where the solutions handle the interchange
standard natively, for instance:

1. When the content has to be signed using personal certificates (e.g. sick-leave note to NAV)

2. Some medical devices and possibly also personal connected health care (PCHC)

3. Special purpose integrations for information critical in its nature (real-time or near real-time
requirements)

Some of these direct integrations can be implemented using built-in functions in the solutions. It may however
be advantageous to simplify direct integrations by collectively handle (some of) them through third party
products, for example a product to handle medical devices.

Figure 1 below shows a conceptual model of HMN’s ESB and how it interacts with the different actors in
Central Norway Health Region.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

5/16

Figure 1 Enterprise Service Bus architecture
In addition to the system-to-system integrations described above, client-to-client integration may be an
alternative in some cases. It is a goal to use common mechanisms and international standards (i.e. CCOW) to
implement these integrations.

3 Integration principles
The following chapter describes integration principles derived from the architecture principles and the
integration architecture described in the chapters above.

3.1 External information exchange
Term Meaning

Principle All external informa�on exchange shall pass through the service bus

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to avoid having integra�ons that are
directly dependant on other systems. This allows adap�ng to changes
in HMN and/or external systems without having to make changes in
both systems, as well as reuse of the integra�on across mul�ple
communica�on par�es. By passing all informa�on through an ESB,
improved control on the exchanged informa�on is obtained.

Relevant architecture principles, cf. chapter 2.1:

• Service orienta�on
• Adaptability

Consequences

 (How to implement and
follow – what does it
mean)

All incoming and outgoing messages between HMN and external
systems shall pass through HMN ESB, as an intermediate component.
Required interface changes shall be managed by the ESB, rather than
both end-point systems.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

6/16

Excpe�ons
 (prefefined excep�ons)

• Medical device integration
• Laboratory device integration

3.2 Standardized messages
Term Meaning

Principle Integra�ons shall use standardized communica�on profiles and
content standards.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to have a system which is simpler to
integrate with other systems. The use of standardize messages
simplifies integra�on with systems which are changed/implemented
in the future. This also allows for using common integra�on services
for several separate systems, which use the same message formats,
e.g., pa�ent demographics look-up.

Relevant architecture principles, cf. chapter 2.1:

• Service orienta�on
• Interoperability
• Adaptability

Consequences

 (How to implement and
follow – what does it
mean)

All integra�ons shall use interna�onal communica�on profiles and
content standards, when possible. When establishing or maintaining
integra�ons, proprietary interfaces or local variants shall be avoided,
if there are suitable interna�onal communica�on profiles and content
standards for the integra�on.

Excpe�ons
 (prefefined excep�ons)

• Integra�ons with mandatory na�onal standards

3.3 Transport guarantee
Term Meaning

Principle The ESB shall ensure transfer of data from one system to another,
based on a predefined route.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to achieve fast, efficient and secure
transfer of data between systems. The service bus shall guarantee
that received messages are delivered to the recipient system, or in the
opposite to guarantee that sent messages are delivered to the
senders receiving system. If the recipient is unable to receive the
message, the service bus shall no�fy the sender.

Relevant architecture principles, cf. chapter 2.1:

• Quality of use
Consequences

 (How to implement and
follow – what does it
mean)

Received messages may be schema-validated, but no valida�on is
performed on the content. If the data is not possible to interpret, or
the recipient is unreachable, a no�fica�on shall be communicated to
the sender. If the sender and/or receiver requires it, the service bus
shall guarantee the order of the messages.

Excpe�ons
 (prefefined excep�ons)

3.4 No duplicate checking on the service bus,
Term Meaning

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

7/16

Principle The service bus shall not perform any form of duplicate check on the
data.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to delimit the responsibility between
the service bus and the communica�ng system. All messages are
managed as unique messages by the service bus. The service bus
assumes that the sender and receiver takes responsibility for keeping
track of which messages are sent and received.

Relevant architecture principles, cf. chapter 2.1:

• Informa�on management

Consequences
 (How to implement and

follow – what does it
mean)

Messages shall be managed as unique messages regardless of
whether or not they are duplicates. The business logic for duplicate
management shall be the responsibility of the sending and/or
receiving system.

Excpe�ons
 (prefefined excep�ons)

3.5 Traceability
Term Meaning

Principle All informa�on exchange shall be logged in a manner which ensures
traceability.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to ensure informa�on integrity and
traceability.

Relevant architecture principles, cf. chapter 2.1:
Informa�on security

Consequences
 (How to implement and

follow – what does it
mean)

The receipt if a message by the service bus, as well as the ac�ons
taken by the service bus towards the message, shall be logged. It shall
be possible to track several events occurring with the same
informa�on exchange throughout the en�re service bus. As a
minimum, the following ac�ons shall be logged; received by the
service bus, change/transforma�on, and delivery to the receiving
system.
The message’s unique ID shall follow the message throughout the
en�re service bus, in order to ensure correct logging. Key informa�on
of the message shall be extracted and made searchable by the
logging/tracking system.

Excpe�ons
 (prefefined excep�ons)

3.6 Communication security
Term Meaning

Principle Consumers outside the secure zone shall not ini�ate traffic directly to
the secure zone.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

8/16

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to ensure the security of the secure
zone. All data transfer in to or out from the secure zone shall be
ini�ated from within the secure zone.

Relevant architecture principles, cf. chapter 2.1:

• Informa�on security

References:

• Code of conduct
Consequences

 (How to implement and
follow – what does it
mean)

The sender shall transmit the message to a service, which the service
bus in turn listens to. The service bus shall ini�ate fetching of the
messages from the service. A reverse proxy (e.g., BigIP) will be the
mechanism/service responsible for receiving the incoming request,
termina�ng the request and forwarding it to the service bus.

Excpe�ons
 (prefefined excep�ons)

3.7 Transformation
Term Meaning

Principle Transforma�on from the sender’s message format to the receiver’s
message format shall be done on the service bus, preferably on the
BizTalk server.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to consolidate where transforma�on is
performed and maintain flexibility and adaptability to changes in
integra�ons and/or systems. This entails that the receiver system will
not have to manage different data forma�ng from different senders,
and reduce the impact of changes in data format in the sending
system for the receiver system.

Relevant architecture principles, cf. chapter 2.1:

• Adaptability
• Service orienta�on

Consequences

 (How to implement and
follow – what does it
mean)

The messaging contract between the sender and the service bus, and
between the service bus and receiver system will iden�fy which
formats are valid for the given systems. During transforma�on of the
message, all fields will be transformed to the message format used by
the receiver system. The content standard directs the frmat. Changes
to field format (typically date format, number format etc.) shall be
done on the service bus, so that the different systems won’t have to
make adapta�ons to another system’s field format in their message
format. However, it is important that numerical values are not
rounded.

Excpe�ons
 (prefefined excep�ons)

Personally signed content (PKI) cannot be transformed on the service
bus.

3.8 Transformation when more than one integration platform is involved
Term Meaning

Principle Avoid unnecessary intermediate transforma�ons.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

9/16

Ra�onale
 (Why we have this principle,

reference to arch prinsciple or
norm)

The purpose of the principle is to avoid having transforma�on
distributed unnecessarily across several intermediate steps along the
communica�on chain, when there are more than one integra�on
pla�orms involved in an integra�on.

Relevant architecture principles, cf. chapter 2.1:

• Quality of use

Consequences
 (How to implement and follow

– what does it mean)

Transforma�on shall be done on one of the integra�on pla�orms, and
the other(s) should preferably act as a relay. Where transforma�on
should be performed must be agreed upon prior to establishing the
integra�on.

Excpe�ons
 (prefefined excep�ons)

3.9 Encryption of content
Term Meaning

Principle Content ‘sent to’ or ‘received’ from systems residing outside the
secure zone (HMN in this context), containing sensi�ve informa�on,
shall be encrypted.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to maintain the required security in
order to ensure the privacy of the informa�on subjects.

Relevant architecture principles, cf. chapter 2.1:

• Information security
References:

• Code of Conduct, factsheet #24
Consequences

 (How to implement and
follow – what does it
mean)

The contract between the systems outside the secure zone and the
service bus shall include a descrip�on of how the messages shall be
encrypted and decrypted in the message exchange. The service bus
shall manage the encryp�on and decryp�on of the messages.

Excpe�ons
 (prefefined excep�ons)

3.9.1 Signing
Term Meaning

Principle Messages ‘sent to’ or ‘received’ from systems residing outside the
secure zone shall be signed with the sender’s enterprise cer�ficate

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to enable the receiver of a message to
verify the iden�ty of the sender. If required, a personal cer�ficate is
used as well.

Relevant architecture principles, cf. chapter 2.1:

• Information security
Consequences

 (How to implement and
follow – what does it
mean)

The service bus shall manage valida�on of cer�ficates on incoming
messages, and be able to sign outgoing messages with the sender’s
enterprise cer�ficate.

Excpe�ons
 (prefefined excep�ons)

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

10/16

3.9.2 Authentication
Term Meaning

Principle All integra�ons shall conform to authen�ca�on mechanisms with
security levels appropriate for the informa�on exchanged.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to maintain the confiden�ality of
informa�on, by ensuring unequivocal iden�fica�on of the
communica�on par�es.

Relevant architecture principles, cf. chapter 2.1:

• Information security

References:

• Code of Concuct, factsheet 14?

Consequences
 (How to implement and

follow – what does it
mean)

Authen�ca�on mechanism at appropriate security levels shall be used
with all integra�ons to iden�fy the communica�on par�es.
Specifically, this means using PKI at levels 3/Person-Standard or
4/Person-Høyt.

Excpe�ons
 (prefefined excep�ons)

3.9.3 Enrichment
Term Meaning

Principle The service bus shall as an excep�on enrich a message transmi�ed
from one system to another.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to avoid unnecessary manipula�on of
content. The content transmi�ed through the integra�on should, as
much as possible, contain the same informa�on as when it is
transmi�ed out of the source system. Integra�ons shall as a rule of
thumb not compensate for the shortcomings of the involved
applica�ons.

Relevant architecture principles, cf. chapter 2.1:

• Information management

Consequences
 (How to implement and

follow – what does it
mean)

Integra�ons shall be implemented with minimal use of enrichment, as
far as possible other methods shall be explored.

Excpe�ons
 (prefefined excep�ons)

One excep�on could be if the sender system and receiver system use
different codes/iden�fiers for master data, e.g., requisi�oner
iden�fier. In that case the service bus is responsible for look-up to the
correct register, in order to transmit the correct iden�fier.

3.9.4 Transport receipt
Term Meaning

Principle The service bus shall be able to create and transmit a transport
receipt (ack/nack), and receive incoming transport receipts.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

11/16

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to ensure verifica�on of successful
data transfer.

Relevant architecture principles, cf. chapter 2.1:

• Informa�on security
• Informa�on management
• Quality of use

Reference:

Consequences
 (How to implement and

follow – what does it
mean)

If required by the sender, the service bus shall when receiving a
message offer a transport receipt confirming that the message is
received. If the recipient transmits a transport receipt, the service bus
shall be able to receive it. This applies to service calls and message
exchange with systems/applica�ons. A prerequisite for synchronous
transport receipts is the use of adapters suppor�ng synchronous
communica�on.

The sender shall be able to wait for a transport receipt in the same
transac�on as the transmission to the service bus, and the service bus
shall be able to receive a transport receipt from the recipient in the
same transac�on as the transmission.

Excpe�ons
 (prefefined excep�ons)

3.9.5 Application receipt
Term Meaning

Principle The service bus shall receive and transmit an applica�on receipt.

Ra�onale
 (Why we have this

principle, reference to arch
prinsciple or norm)

The purpose of the principle is to ensure that the data transfer is
accepted and understood by the receiving system, or get feedback on
status or errors that has occurred in the processing of the message.

Relevant architecture principles, cf. chapter 2.1:

• Informa�on security
• Informa�on management
• Quality of use

References: Norwegian e-health framework for electronic message
exchange in healthcare
[2]

Consequences
 (How to implement and

follow – what does it
mean)

If required the service bus shall be able to receive an applica�on
receipt from the receiver system, and transmit this to the sender
system. The applica�on receipt confirms that the message is read by
the receiver applica�on, and can contain addi�onal informa�on such
as status and error messages. This receipt shall be wri�en to the
logging system on the ID of the origina�ng message (i.e., the message
of which the applica�on receipt is a confirma�on). This can for
example be the ID of a lab order sent to the LIMS.

When required, applica�on receipt is sent as a separate transac�on,
but requires that the receipt contains a reference to the origina�ng
message (unique ID).

Excpe�ons
 (prefefined excep�ons)

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

12/16

4 Integration specific parameters and attributes
4.1 Integration type
There are two main types of integration that is Data Exchange or Client to client.
Data exchange is the most common, and commonly described as “Integration”.

Client to client – The main purpose of integrations of this type is to launch an external system from one client
system to another on the same client (e.g. PC). Information may be passed as part of the “launch-command”.
In some cases this information may be meta information such as user-id and patient-id, or even some more
information to pre-populate the screen on the launched system.
Data Exchange - The main purpose of this integration type is information exchange between systems, often
mentioned as Application-to-application (A2A) or Business to business (B2B). Sometimes data is exported or
imported more or less manually from the applications. From an end to end perspective this is still considered to
be an integration.

Chapter 4.1 describe patterns and scenarios for data exchange integrations

4.2 Data exchanges and exchange patterns
There are two main types of data exchanges, Synchronous and Asynchrounous.
These two has different subsets of (message) exchange patterns which is described below.
The description below is based on the following article: «
3 Message Exchange Patterns in Application Integration You Should Know About (with Examples)»
[3]

 Content from the article is cited in Italic text.

In general, message exchange patterns that enable data exchange between applications are either
synchronous or asynchronous, though a combination of these two are also possible.

4.2.1 Synchronous
“Synchronous communication is also called blocking communication, because all operations in an
application that sends a request are blocked until it receives a reply. The connection between the
sender and replier (in the API context, this would be typically HTTP connection) stays open during this
period of time. This type of communication is essential when the sender application needs an immediate
response to continue with data processing.
Synchronous message exchange patterns also mean that all operations are performed one after the
other, or in other words, in sequence. This is why using an integration middleware that ensures very
high performance with low latency is key in such integration scenarios – after all, data needs to be
processed at very high speed so that no business operations get impeded.”

The following exchange pattern(s) are Synchronous:

4.2.1.1 Request-Response
“This is a very typical message exchange pattern of synchronous communication, and it is what it says:
An application sends a request to another application, or if an integration middleware is implemented, to
the middleware. It then waits for a response, or a timeout.

Example: In a real business situation this would be the case when a support employee needs to call a
customer from the interface of the corporate communication tool.

In this scenario, the communication tool doesn’t store customer’s account data, but gets it from a CRM
system it is connected to. When the employee clicks on the “Call” button, the communication tool first
sends a request for the telephone number to the CRM system, and can perform the “Call” operation
only after it receives this number back.”

This exchange pattern shall be used when one is dependent of an immediate answer to be able to
proceed.

 Typically when two applications is involved in a process cooperation and it is not possible or suitable to
continue the process in one application before the answer from the other application arrives.

https://www.elastic.io/message-exchange-patterns-application-integration/

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

13/16

Examples:
1. Patient demographics request from an external system to the EHR
2. Income request from EHR to NAV.

4.2.2 Asynchronous
“Another name for asynchronous communication is non-blocking communication, because, as you
might well have already assumed, the application that sends a request doesn’t have to wait for a reply in
order to continue operating. The connection between the sender and replier will be closed as soon as
the request has been sent out. This also means that multiple processes can occur in parallel.

This type of communication is especially effective when there are large volumes of data that needs to
be processed, and is a better fit when no immediate response is expected or required.

Asynchronous message exchange patterns are considered to be more reliable than synchronous, as no
application would have a timeout because of waiting for responses, which logically leads to higher
services availability. Also, additional functionality can be implemented in the messaging system, and not
on the communication ends. But really, it completely depends on the use case. There are integration
scenarios when asynchronous communication simply won’t work, however fine it is. This needs to be
taken into consideration when deciding in favour or against specific message exchange patterns.”

The following exchange patterns are Asynchrounous:

4.2.2.1 Asynchronous Request-Response
 “Although the Request-Response pattern is actually considered synchronous by nature, there is its
asynchronous variation, which is called Request-Callback. In this case, the sender application doesn’t
have to wait for a response to continue operating. Instead, it sets up a callback process to handle a
reply.

Typically, this type of communication would require a specific ID assigned to an original request, as well
as a callback address.

Example: The Request-Callback pattern is useful when more than one operation need to be performed
in sequence, for example, when an application not only loads data from other sources, but also applies
a complex process for its analysis, in which the output of one task is the input of the next one.”

This exchange pattern shall be used when one is dependent of a confirmation, but can receive the
answer at a later point in time.

 When two applications is involved in a process cooperation or information completion but the triggering
application can proceed the process without answer from the

 other application.

Examples:
1. Norwegian e-health dialogue message
2. Laboratory order to an external laboratory system
3. Incoming radiology order from external EHR

4.2.2.2 Fire and Forget
 “This message exchange pattern is also called one-way, because an application sends a request and
continues operating without waiting for a response from receiving application or system, although it will
usually expect to get some acknowledgement of that (e.g. a response via webhook). It is a typical
pattern of asynchronous communication.

Example: A very classic example would be regular synchronization of data between, say, a cloud-based
CRM application and an on-premise ERP system, so that data in both applications is up-to-date.
Imaging a Sales employee adding some new account data or changing existing data in the CRM
application.

CRM would spot the changes and push them, e.g. into a queue on an integration middleware, from
where it will be at some point picked up by or pushed to the ERP system. It doesn’t really matter either
for the user, or for his/her business processes when the update occurs – immediately or in an hour -, as
long as it occurs eventually.”

Examples:

1. Batch-transfer of information at a given time, e.g, medication stock

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

14/16

4.2.2.3 Message Routing
 “Message Routing is an example of the Fire and Forget pattern when there are more than two
applications that need to be integrated.

 Example: This might be the case when a company uses one system for billing customers, but two or
more CRM systems for various groups of customers, divided by e.g. their locations (South America,
North America, APAC) or industries (Automotive, Banking, Pharmaceuticals, etc.).

In this case, an integration middleware is basically a must. Naturally, certain routing rules, and if
necessary, even splitting rules (in case only parts of one and the same document will be pushed to
appropriate CRM systems) need to be defined properly. But without an integration layer between all
applications involved, such an integration scenario will be extremely difficult to address.”

Examples:

1. Daily settlement and posting basis to finance systems, when the message shall be routed by the
service bus based on the ID of the provider.

4.2.2.4 Publish and Subscribe
 “In a way, this message exchange pattern is similar to the Message Routing pattern, only it works the
other way round. The receiver applications define what type of data they are interested in. When a
sender application pushes data to a so-called ‘broker’, – in other words, publishes it,- the broker
distributes this data in accordance with the receiver applications’ specifications.

It doesn’t mean, by the way, that there can be only one sender application; like it is with receiver
applications, there can be any number of applications that send their data to the broker.

As you might have already guessed, the Publish and Subscribe pattern belongs to the group of
asynchronous message exchange patterns.

Example: A good example of this pattern would be an on-premise ERP suite of, say, an automotive
manufacturer that collects data from all kinds of sources. This data is needed by multiple various
applications, like a CRM, several analytics systems, a billing system, and so on. The advantage of this
pattern is that first, it is the most loosely coupled one, – the applications involved doesn’t have to know
anything at all about each other. And secondly, it presents an ideal way of distributing large amounts of
data between multiple applications and systems in a timely manner.”

Examples:

1. Death notification message to external systems (e.g. ERP)
2. Information of planned appointment to external systems

4.3 Communication profile
In some cases the external systems facilitates communication and integration using communication profiles.
If an integration is realized by using a communication profile, defining which messages to send in which
direction and the content standard to use. Communication profiles also includes patterns for receipt-messages
to be used

The most common communication profiles used are:

- ebXml – used for e-messaging based on the Norwegian e-health/KiTH-standard

- IHE (Intregrating the Health Enterprise) – is an initiative by healthcare professionals and industry to
improve the way computer systems in healthcare share information. IHE has published a number of
profiles for different use-cases and domains within Healthcare. Most known is the Infrastructure profiles
(e.g. IHE-XDS).

4.3.1 When to use which profile
If a communication profile should be used, and which one depends on the requirements of external system,
communication partner or national regulations. The use of ebXML for national message exchange is
mandatory, except AMQP.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

15/16

4.4 Content standards
There are several content standards in use, the most common are:

- HL7 v2.x, HL7 FHIR, HL7v3, HL7 CDA, ASTM, DICOM, e-helse/KiTH

4.4.1 When to use which standard
Based on the integration principle “Standardized messages” international content standard shall be preferred
when possible.

4.5 Technical protocols
There are several Technical communication protocols, the most common are:

- Http, SOAP, REST, POP/SMTP, FTP/sFTP/FTPS, File, MLLP, Queue (MSMQ, AMQP etc)

4.5.1 When to use which protocol
If it is possible to choose the technical protocol to use it shall match the “Data exchanges and exchange
patterns”. Protocols of synchronous nature shall be preferred when the data exchange is synchronous (e.g.
Http, SOAP, REST). For asynchronous data exchanges protocols that are asynchronous shall be used. (e.g.
MSMQ, File).
The choice of protocol should also be made based on the “Integration principles”.

Sometimes the communication profile or content standard dictates which technical protocol to use.

4.6 Data categories
There are two main categories of data exchanged in integrations:

- Production data, e.g. orders, discharge summary
- Master data, e.g, citizen demographics and health personnel information

5 How to document integrations
This chapter describes how integrations shall be documented.

There are several work products used when describing integrations, see table below

Work product Purpose Template owner

Interface blueprint Figure of all integrations in/out from HMN HMN
Integration detailed
design (IDD)

One document for each integration, with end to end focus
(guidance for completion covered by the framework)

HMN

Business
requirement
document

One document for each integration, with end to end focus
(guidance for completion covered by the framework).

HMN

Interface Field-by-
field mapping

Document covering field by field mapping for use in
transformation

HMN

5.1 How to model integrations
Hopex shall be used for diagrams describing the integration. How to use Hopex is described in “Veileder for
bruk av Mega”.

5.1.1 Integration blueprint
The purpose of the integration blueprint is a high level visual overview of the integrations from/to a system, with
one specific system in focus.
In Mega this may be described in Application Environment diagram

The blueprint shows the integrations, content and endpoints.

Dokument «Integrasjonsrammeverk», ID 2945 - EQS

16/16

The blueprint does not show:
- Middleware/Integration platform
- Route
- Flow/logic
- Tranformation

5.1.2 Integration process
The purpose of integration processes is to associate an integration with the performed processes. At lower
levels (i.e., sub-processes), this allows for description of flow/logic, routes and transformation, as well as the
distribution of tasks between the different components (i.e., middleware/integration platform and end-points).
Where applicable, common processes should be reused across multiple integrations. Typically described as a
BPMN-process with swim lanes for the involved components

The integration process does not show:

- Overview of exchanges/exchange contracts between components

5.1.3 Integration sequence
The purpose of the integration sequence is to provide an overview of the dialogue sequence within one single
exchange. It may contain simple logic, but mainly describes the order and direction of the flow between two
systems. This is described using an Exchange Diagram (BPMN).

The integration sequence does not show:

- Route
- Transformation
- Middleware/Integration platform

[1]

https://kilden.sykehusene.no/download/attachments/5177381/20180625_Architecture%20Principles_Version_2.1.pdf
[2]

 https://ehelse.no/standarder-kodeverk-og-referansekatalog/standarder-og-stottedokumenter-for-elektronisk-
samhandling
[3] Olga Haneko 14/10/2016 «3 Message Exchange Patterns in Application Integration You Should Know About (with Examples)»
https://www.elastic.io/message-exchange-patterns-application-integration/

https://kilden.sykehusene.no/download/attachments/5177381/20180625_Architecture%20Principles_Version_2.1.pdf
https://ehelse.no/standarder-kodeverk-og-referansekatalog/standarder-og-stottedokumenter-for-elektronisk-samhandling
https://www.elastic.io/message-exchange-patterns-application-integration/

